Neue Forschungen verdoppeln das Alter des Universums auf 26,7 Milliarden Jahre

Konzeptkunst des riesigen Universums

Eine neue Studie legt nahe, dass das Universum 26,7 Milliarden Jahre alt sein könnte, fast doppelt so viel wie das allgemein angenommene Alter von 13,7 Milliarden Jahren. Das neue Modell, das Zwickys Theorie des müden Lichts und die sich entwickelnden Dirac-Kopplungskonstanten berücksichtigt, kann die Existenz junger, reifer Galaxien erklären, die nur 300 Millionen Jahre nach dem Urknall entstanden sind, und eine überarbeitete Interpretation der kosmologischen Konstante vorschlagen.

Eine neue Studie legt nahe, dass das Universum 26,7 Milliarden Jahre alt sein könnte, was die weithin akzeptierte Schätzung von 13,7 Milliarden Jahren auf der Grundlage des Lambda-CDM-Konkordanzmodells in Frage stellt.

Laut einer neuen Studie, die das vorherrschende kosmologische Modell in Frage stellt und neues Licht auf das sogenannte „unmögliche frühe Galaxienproblem“ wirft, könnte unser Universum doppelt so alt sein wie aktuelle Schätzungen.

sagt Autor Rajendra Gupta, Assistenzprofessor für Physik an der School of Science der University of Ottawa.

Rajendra Gupta

„Unser neu entwickeltes Modell verlängert die Galaxienentstehungszeit um mehrere Milliarden Jahre, sodass das Universum 26,7 Milliarden Jahre alt ist und nicht wie zuvor geschätzt 13,7.“ Rajendra Gupta – Außerordentlicher Professor für Physik an der Fakultät für Naturwissenschaften der Universität Ottawa. Bildnachweis: Universität Ottawa

Seit Jahren berechnen Astronomen und Physiker das Alter unseres Universums, indem sie die seither verstrichene Zeit messen[{“ attribute=““>Big Bang and by studying the oldest stars based on the redshift of light coming from distant galaxies. In 2021, thanks to new techniques and advances in technology, the age of our universe was thus estimated at 13.797 billion years using the Lambda-CDM concordance model.

However, many scientists have been puzzled by the existence of stars like the Methuselah that appear to be older than the estimated age of our universe and by the discovery of early galaxies in an advanced state of evolution made possible by the James Webb Space Telescope. These galaxies, existing a mere 300 million years or so after the Big Bang, appear to have a level of maturity and mass typically associated with billions of years of cosmic evolution. Furthermore, they’re surprisingly small in size, adding another layer of mystery to the equation.

Zwicky’s tired light theory proposes that the redshift of light from distant galaxies is due to the gradual loss of energy by photons over vast cosmic distances. However, it was seen to conflict with observations. Yet Gupta found that “by allowing this theory to coexist with the expanding universe, it becomes possible to reinterpret the redshift as a hybrid phenomenon, rather than purely due to expansion.”

“Our newly-devised model stretches the galaxy formation time by several billion years, making the universe 26.7 billion years old, and not 13.7 as previously estimated.”

Rajendra Gupta, Adjunct professor of physics in the Faculty of Science at the University of Ottawa

In addition to Zwicky’s tired light theory, Gupta introduces the idea of evolving “coupling constants,” as hypothesized by Paul Dirac. Coupling constants are fundamental physical constants that govern the interactions between particles. According to Dirac, these constants might have varied over time. By allowing them to evolve, the timeframe for the formation of early galaxies observed by the Webb telescope at high redshifts can be extended from a few hundred million years to several billion years. This provides a more feasible explanation for the advanced level of development and mass observed in these ancient galaxies.

Moreover, Gupta suggests that the traditional interpretation of the “cosmological constant,” which represents dark energy responsible for the accelerating expansion of the universe, needs revision. Instead, he proposes a constant that accounts for the evolution of the coupling constants. This modification in the cosmological model helps address the puzzle of small galaxy sizes observed in the early universe, allowing for more accurate observations.

On July 7, 2023, the study, “JWST early Universe observations and 𝚲CDM cosmology,” was published in the Monthly Notices of the Royal Astronomical Society (MNRAS) by Oxford University Press.

Reference: “JWST early Universe observations and ΛCDM cosmology” by R Gupta, 7 July 2023, Monthly Notices of the Royal Astronomical Society.
DOI: 10.1093/mnras/stad2032

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert