Ein vom Erdkern inspiriertes physikalisches Experiment führt zu einer bahnbrechenden Entdeckung der Turbulenz von Flüssigkeitsströmungen

Wirbel aus geschmolzener Feuerenergie

Physiker haben einen neuen Aspekt der turbulenten Konvektion entdeckt und gezeigt, dass sie dazu führen kann, dass sich ein Feststoff in einer Flüssigkeit frei in zwei Richtungen dreht und sich manchmal aufgrund von Turbulenzen verschiebt. Diese Forschung, die Auswirkungen auf das Verständnis des Flüssigkeitsflusses vom Erdkern zum kochenden Wasser hat, unterstreicht auch die Schlüsselrolle, die Konvektion innerhalb der Erde spielen kann, und die Möglichkeit, Turbulenzen durch Wechselwirkung mit Feststoffen zu kontrollieren.

Turbulente Strömungen verleihen einem vom Kern inspirierten Erlebnis eine überraschende Wendung.

Ein Team von Physikern hat eine neue Rolle für eine bestimmte Art von Turbulenzen entdeckt – eine Entdeckung, die Aufschluss über Flüssigkeitsströme gibt, die vom flüssigen Kern der Erde bis hin zu kochendem Wasser reichen.

Forschungsergebnisse, die in der Zeitschrift erscheinen Verfahren der Nationalen Akademie der WissenschaftenIm Mittelpunkt steht die turbulente Konvektion – die Bewegung von Flüssigkeiten, wenn sie von unten erhitzt werden.

John Zhang, Professor für Mathematik und Physik[{“ attribute=““>New York University and NYU Shanghai, the paper’s senior author.

The study, which also included Kaizhe Wang, a researcher in NYU’s Department of Physics, focused specifically on Rayleigh–Bénard convection—a type of convection driven by temperature differences.

Turbulence Flows Cylindrical Container

A recent experimental study, inspired by the super-rotation of the Earth’s solid core, shows when turbulence flows contained in a cylinder interact with a free body a surprisingly smooth rotation is observed. The red (warm) and blue (cold) ribbons represent water flows. Credit: Kaizhe Wang and Jun Zhang

In their experiments, conducted in the Joint Research Institute of NYU Shanghai, the paper’s authors used a cylindrical container filled with water, then heated it from the bottom, creating convective flows. The resulting turbulent flows interacted with a suspended solid (a rectangular panel) that moved freely inside the container—a setting that allowed the researchers to better study how turbulent flows interact with solid structures within.

“Surprisingly, the system becomes somewhat well-behaved,” notes Zhang. “We observed a smooth rotation of the flows and the free solid.”

Their results showed that turbulent convection-powered flows, together with the solid, can move in two directions—one clockwise and the other counterclockwise—with the co-rotational speed increasing with the intensity of the convection. More than that, their rotation can sometimes switch directions, caused by the turbulence.

“The research, inspired by the rotation of Earth’s inner core as it interacts with the convective liquid core, captures the interaction between a turbulent flow and a freely moving body within the flow,” explains Zhang. “The findings confirm that turbulence can be tamed by interacting with solids. It also reminds us that the power of thermal convection might play more important roles inside our planet Earth.”

Reference: “Persistent corotation of the large-scale flow of thermal convection and an immersed free body” by Kaizhe Wang and Jun Zhang, 15 May 2023, Proceedings of the National Academy of Sciences.
DOI: 10.1073/pnas.2217705120

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert