Woher kam der Sauerstoff der Erde? Eine neue Studie weist auf eine unerwartete Quelle hin

Menge an Sauerstoff Die Atmosphäre der Erde macht sie zu einem bewohnbaren Planeten.

21 Prozent der Atmosphäre bestehen aus diesem lebensspendenden Element. Aber in der tiefen Vergangenheit – bis in die Neuzeit zurück, vor 2,8 bis 2,5 Milliarden Jahren – Dieser Sauerstoff war fast nicht vorhanden.

Wie also wurde die Erdatmosphäre mit Sauerstoff angereichert?

Unsere Forschungveröffentlicht in Naturwissenschaften der Erdefügt eine verlockende neue Möglichkeit hinzu: dass zumindest ein Teil des frühen Sauerstoffs der Erde aus einer tektonischen Quelle durch Bewegung und Zerstörung der Erdkruste stammte.

Archäisches Land

Das Archäische Äon repräsentiert ein Drittel der Geschichte unseres Planeten, von vor 2,5 Milliarden Jahren bis zu den letzten vier Milliarden Jahren.

Dieses seltsame Land war eine bedeckte Wasserwelt grüne Ozeaneeingehüllt Methandunst, und völlig ohne vielzelliges Leben. Ein weiterer seltsamer Aspekt dieser Welt ist die Natur ihrer tektonischen Aktivität.

Auf der modernen Erde wird die vorherrschende tektonische Aktivität als Plattentektonik bezeichnet, bei der die ozeanische Kruste – die äußerste Landschicht unter den Ozeanen – an Treffpunkten, die als Subduktionszonen bezeichnet werden, in den Erdmantel (der Bereich zwischen Erdkruste und Erdkern) einsinkt. Es gibt jedoch erhebliche Debatten darüber, ob die Plattentektonik in der Archaischen Ära ein Comeback feierte.

Ein Merkmal der jüngsten Subduktionszonen ist ihre Konnektivität oxidiertes Magma. Dieses Magma bildet sich, wenn sich oxidierte Sedimente und Grundwasser – kaltes, dichtes Wasser – in der Nähe des Meeresbodens bilden. in den Erdmantel eingebracht. Dabei entsteht Magma mit einem höheren Sauerstoff- und Wassergehalt.

Unsere Forschung zielt darauf ab, zu testen, ob das Fehlen von Oxidationsmitteln in archaischen Grundwässern und Sedimenten die Bildung von oxidiertem Magma verhindern kann. Die Identifizierung eines solchen Magmas in neuen magmatischen Gesteinen könnte Beweise dafür liefern, dass Subduktion und Plattentektonik vor 2,7 Milliarden Jahren stattfanden.

Siehe auch  Startbericht – Das Raumschiff bereitet sich auf seinen dritten integrierten Testflug vor

Erfahrung

Wir haben Proben von 2.750 bis 2.670 Millionen Jahre alten Granitgesteinen aus dem gesamten Unterbezirk Abetepe Wawa der Upper Province gesammelt – dem größten erhaltenen archäischen Kontinent, der sich 2.000 Kilometer von Winnipeg, Manitoba, bis in den Fernen Osten von Quebec erstreckt. Dies ermöglichte es uns, das Ausmaß der Magmaoxidation zu untersuchen, die während des neuen Zeitalters erzeugt wurde.

Die Messung des Oxidationszustands dieser Eruptivgesteine, die durch Abkühlung und Kristallisation von Magma oder Lava entstanden sind, ist eine Herausforderung. Ereignisse nach der Kristallisation haben diese Gesteine ​​möglicherweise durch Verformung, Bestattung oder anschließende Erwärmung verändert.

Also entschieden wir uns, einen Blick auf die zu werfen Mineral Apatitgelegen in Zirkon Kristalle in diesen Felsen. Zirkonkristalle können extremen Temperaturen und Belastungen durch Nachkristallisationsereignisse standhalten. Sie enthalten Hinweise auf die Umgebungen, in denen sie ursprünglich entstanden sind, und liefern genaue Altersangaben für die Felsen selbst.

Winzige Apatitkristalle mit einer Breite von weniger als 30 Mikrometern – die Größe einer menschlichen Hautzelle – sind in den Zirkonkristallen eingeschlossen. Schwefel enthalten. Durch Messen der Schwefelmenge im Apatit können wir feststellen, ob der Apatit aus oxidiertem Magma gewachsen ist.

Wir haben es geschafft zu messen Sauerstoff entweicht des ursprünglichen archaischen Magmas – das ist im Grunde, wie viel freier Sauerstoff darin ist – unter Verwendung einer speziellen Technik namens Röntgenabsorptionsspektroskopie in der Nähe der Randstruktur (S-XANES) an der Advanced Photon Source des Synchrotrons Argonne National Laboratory in Illinois.

Sauerstoff aus Wasser gewinnen?

Wir fanden heraus, dass der Schwefelgehalt des Magmas, der ursprünglich bei etwa Null lag, vor etwa 2.705 Millionen Jahren auf 2.000 ppm angestiegen ist. Dies deutet darauf hin, dass das Magma schwefelreich geworden ist. zusätzlich Vorherrschen von S6 + – einer Art Schwefelion – in Apatit Er schlug vor, dass der Schwefel aus einer oxidierten Quelle stammte, identisch Daten von Wirtszirkonkristallen.

Siehe auch  Die NASA testet erfolgreich einen neuen Motor für die Erforschung des Weltraums

Diese neuen Erkenntnisse deuten darauf hin, dass sich oxidierte Magmen in der Neuzeit vor 2,7 Milliarden Jahren gebildet haben. Die Daten zeigen, dass ein Mangel an gelöstem Sauerstoff in den archaischen Reservoirs die Bildung von schwefelreichen, oxidierten Magmen an Subduktionszonen nicht verhinderte. Der Sauerstoff in diesem Magma muss aus einer anderen Quelle stammen und wurde schließlich bei Vulkanausbrüchen in die Atmosphäre freigesetzt.

Wir fanden heraus, dass das Vorkommen dieser oxidierten Magmen mit großen Goldmineralisierungsereignissen in der Upper Province und im Yilgarn Craton (Westaustralien) korreliert, was einen Zusammenhang zwischen diesen sauerstoffreichen Quellen und der Bildung globaler Erzvorkommen zeigt.

Die Auswirkungen dieses oxidierten Magmas gehen über das Verständnis der Geodynamik der frühen Erde hinaus. Früher wurde angenommen, dass archaisches Magma weniger wahrscheinlich oxidiert, wenn dies der Fall ist Meereswasser Und die Gesteine ​​oder Sedimente des Meeresbodens Es war nicht.

Während der genaue Mechanismus nicht klar ist, weist das Auftreten dieses Magmas darauf hin, dass der Prozess der Subduktion, bei dem Ozeanwasser Hunderte von Kilometern in unseren Planeten transportiert wird, freien Sauerstoff erzeugt. Dies oxidiert dann den oberen Mantel.

Unsere Studie zeigt, dass die archaische Subduktion ein unerwarteter entscheidender Faktor für die frühzeitige Sauerstoffversorgung der Erde sein könnte Sauerstoff riecht vor 2,7 Milliarden Jahren auch Das große Oxidationsereignis, bei dem der atmosphärische Sauerstoff vor 2,45 auf 2,32 Milliarden Jahre um 2 % zunahm.

Soweit wir wissen, ist die Erde der einzige Ort im Sonnensystem – Vergangenheit oder Gegenwart – mit aktiver Plattentektonik und Subduktion. Dies deutet darauf hin, dass diese Studie den Sauerstoffmangel und schließlich auch das Leben auf anderen Gesteinsplaneten in der Zukunft teilweise erklären könnte.

Siehe auch  Haben Dinosaurier ihre maximale Größe erreicht?

Dieser Artikel wurde ursprünglich veröffentlicht Gespräch von David Möll an der Laurentian University und Adam Charles Simon, und Xuyang Meng an der University of Michigan. Lies das Der Originalartikel ist hier.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert